Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- V(OLD) EXAMINATION – SUMMER 2019 Code:151903 Date:31/05/2019

Subject Code:151903

Subject Name: Fluid Power Engineering Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Derive an expression of power transmission through pipe. Also find condition for maximum power transmission and corresponding efficiency of transmission	07
	(b)	Derive Darcy- Weisbach formula for head loss due to friction in pipe flow.	07
Q.2	(a)	Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel can never exceed 50%.	07
	(b)	Write brief note on hydraulic ram.	07
	<i></i>	OR	~ -
	(b)	Prove that the efficiency of propulsion when the inlet orifices face the direction of motion of the ship is given by $2u$	07
		$\eta = \frac{2u}{V + 2u}$	
Q.3	(a)	What is degree of reaction? Prove that for Francis turbine degree of reaction is 50%.	07
	(b)	The following data relates to a Pelton wheel turbine	07
		(i) Head of base of nozzle=75m	
		(ii) speed of the wheel = 250 rpm (iii) speed ratio = 0.46	
		(iv) Power at the shaft=120 kw	
		(v) Coefficient of velocity = 0.98	
		(vi) Overall efficiency =86%. Design the Pelton wheel to find the wheel diameter,	
		diameter of jet, see of buckets and number of buckets on the wheel.	
03	(a)	Write shortwate on: UR	07
Q.J	(a)	(i) Primog in centrifugal pump	07
		(ii) Pre-whirl in centrifugal compressor	
	(b)	Explain the governing of Kaplan turbine with neat sketch.	07
Q.4	(a)	Define specific speed of pump. Derive an expression for specific speed for	07
	A	centrifugal Pump.	~ -
	(b)	A single acting reciprocating pump, running at 60 rpm delivers 0.54 m ³ of water per minute. The diameter of the piston is 200mm and stroke length 300mm. the suction and delivery heads are 4m and 12m respectively. Determine: (i) Theoretical discharge, (ii) co-efficient of discharge, (iii) percentage slip of pump,	07
		(iv) power required to drive the pump.	
04	(a)	UR Derive an expression of work done per cycle for reciprocating compressor by	07
Q.4	(a)	considering clearance volume.	U/
	(b)	A centrifugal compressor delivers 16 kg/sec of air with a total head pressure ratio of 4:1, when running at 15000 rpm. Inlet total head temperature is $25 {}^{0}$ C, slip factor 0.9, power input factor 1.04 and isentropic efficiency 82% calculate: (i)	07

factor 0.9, power input factor 1.04 and isentropic efficiency 82%, calculate: (i) Outlet diameter of the impeller, (ii) Power input. Take $C_p = 1.005 \text{ kJ/kgK}$.

Download all NOTES and PAPERS at StudentSuvidha.com

Q.5	(a) (b)	With neat sketch explain construction and working of hydraulic intensifier Explain following terms: Draftube, Cavitation and Air vessel	07 07
		OR	
Q.5	(a)	With neat sketch explain construction and working of hydraulic intensifier	07
	(b)	Explain the phenomenon of surging and stalling in an axial flow compressor	07

www.dentsunidna.com studentsunidna.com